Preparation of highly radioactive targets for nuclear data measurements

Veronika Mocko,¹ Brad J. DiGiovine,¹ Cecilia Eiroa-Lledo,¹ Michael E. Fassbender1,¹ Paul E. Koehler,¹ Stosh A. Kozimor,¹ Sean A. Kuvin,¹ Hye Young Lee,¹ Artem V. Matyskin,^{1,2} Ellen M. O'Brien,¹ Athanasios Stamatopoulos,¹ and C. Etienne Vermeulen¹

¹Los Alamos National Laboratory, Los Alamos, NM, USA

²Pennsylvania State University, University Park, PA, USA

Nuclear data for neutron induced reactions on short-lived radioisotopes are critical for a wide range of applications spanning from radiochemical diagnostics, nuclear reactor designs to nuclear astrophysics. In this contribution, fabrication of two different targets: (1) ⁵⁶Ni electroplated on gold foil and (2) ⁸⁸Zr-filled tungsten canister within a hot cell will be described. Tools developed to accomplish these unique experiments by remote handling techniques will be highlighted. Nickel-56 ($t_{1/2} = 6.075$ days) was produced by medium energy proton-induced reaction on natural cobalt target at Isotope Production Facility (IPF) at Los Alamos Neutron Science Center (LANSCE). After target dissolution, approximately 100 mCi of ⁵⁶Ni was separated from bulk of cobalt by cation-exchange chromatography. The final step involved electroplating of isolated and purified 56 Ni on a 6 μ m-thick gold foil mounted on a metal frame. This sample was studied using the fast neutron beams available at the Weapons Neutron Research (WNR) facility at LANSCE [1, 2]. The second project involved production of 88 Zr ($t_{1/2} = 83.4$ days) via low-energy proton irradiation of natural yttrium target at IPF. The yttrium target was dissolved and several curries of ⁸⁸Zr were isolated utilizing hydroxamate-based extraction chromatography resin. Zirconium-88 was concentrated to very small volume in hydrochloric acid. An automated dispensing unit was designed and installed inside a hot cell to dispense samples of ⁸⁸Zr ranging from 4 to 8 microliters into tungsten canisters and enclosed using lead plugs. Neutron transmission measurements were performed on these ⁸⁸Zrfilled samples at LANSCE utilizing the Device for Indirect Capture Experiments on Radionuclides (DICER) [3, 4].

- B. DiGiovine, L. Zavorka, D. J. Ballard, C. Eiroa-Lledo, A. Georgiadou, S. A. Kuvin, H. Y. Lee, J. S. Marquis, M. J. Mocko, V. Mocko, C. Vermeulen, and D. Votaw, Nucl. Instr. Meth A 1013, 165631 (2021).
- [2] S. A. Kuvin, H. Y. Lee, B. DiGiovine, C. Eiroa-Lledo, A. Georgiadou, M. Herman, T. Kawano, V. Mocko, S. Mosby, C. Vermeulen, D. Votaw, M. White, and L. Zavorka, Phys. Rev. C 105, 044608 (2022).
- [3] A. V. Matyskin, A. Stamatopoulos, E. O'Brien, B. DiGiovine, V. Mocko, M.E. Fassbender, C. E. Vermeulen, and P.E. Koehler, Scientific Reports (accepted), (2024).
- [4] A. Stamatopoulos, A. Matyskin, P. Koehler, A. Couture, B. DiGiovine, V. Mocko, G. Rusev, J. Ullman, C. Vermeulen, J. Radioanal. Nucl. 331, 4857 (2022).